Future-proof your installations with GenSPEED® 6 Category 6 cable, now certified LP by Underwriters Laboratories (UL).

Utilizes EfficienC™ Max Technology to Support High-Wattage Power over Ethernet (PoE) Applications
GenSPEED® 6 Category 6 cable goes beyond the proposed IEEE 802.3bt standard of 49 W to up to 100 W* for even more coverage of high-wattage equipment.

Cable Temperature Rated to 90°C for Higher Protection Against Increased Operating Temperatures and for High-Wattage Applications
General Cable’s EfficienC Max cable is rated to 90°C and constructed of 100% fluoropolymer insulation to offer higher protection against increased operating temperatures and:

- Surpasses the industry standard of 60°C
- Prevents material degradation from elevated temperatures over extended periods
- Reduces impact of high-powered non-standard PoE applications

First to Industry with UL Listing CMP-LP (0.5A)*

Can Contribute to Two LEED® points with Environmental and Health Product Declarations (EPDs and HPDs)

Unique Separator Design Engineered for Consistent Electrical Performance

Performance Guaranteed to 350 MHz

TRU-Mark® Print Legend Contains Footage Markings from 1000' to 0'

Third-Party Verified for Guaranteed Performance

*0.5A is the ampacity rating of the cable, which equates to 100 watts using 50 volts over four pairs.
GenSPEED® 6 Category 6 Cable

APPLICATIONS
- IEEE 802.3: 1000 BASE-T, 10 BASE-T, PoE, PoE+
- ANSI/TIA 568: 1000 BASE-TX
- CDDI, Token Ring, ATM
- Digital Video
- Broadband and Baseband Analog Video
- LEED is a registered trademark of the U.S. Green Building Council.

STANDARD COMPLIANCES
- ANSI/TIA 568-C.2
- NEC/CEC Type CMP (NFPA 262) for Plenum
- UL 444
- RoHS Compliant Directive 2011/65/EU
- ANSI/TIA 862 (Building Automation)
- ICEA S-116-732
- ICEA S-102-700
- ISO/IEC 11801 Ed. 2.0 (Class EA)

APPLICATIONS
- IEEE 802.3: 1000 BASE-T, 100 BASE-TX, 10 BASE-T, PoE, PoE+
- ANSI/TIA 568-C.2
- NEC/CEC Type CMP (NFPA 262)
- UL 444
- RoHS Compliant Directive 2011/65/EU
- ANSI/TIA 862 (Building Automation)
- ICEA S-116-732
- ICEA S-102-700
- ISO/IEC 11801 Ed. 2.0 (Class EA)

CONSTRUCTION
Conductors
- 23 AWG solid bare annealed copper

Insulation
- Non-Plenum: Polyolefin
- Plenum: Fluoropolymer

Color Code
- Pair 1: Blue-White/Blue
- Pair 2: Orange-White/Orange
- Pair 3: Green-White/Green
- Pair 4: Brown-White/Brown

SEPARATOR
- Divider

Rip Cord
- Applied longitudinally under jacket

Jacket
- Non-Plenum: Flame-Retardant PVC
- Plenum: Low-Smoke, Flame-Retardant PVC

GenSPEED® 6 CATEGORY 6 CROSS-SECTION

PHYSICAL DATA
Nominal Cable Diameter (in) | CMP
---|---
2.05
Nominal Cable Weight (lbs/1000 ft) | 25
Minimum Bend Radius (in) | 1.0
Maximum Pulling Force (lbs) | 32
Temperature Rating (°C) | 0 to +60
Operation: | -20 to +90

ELECTRICAL PERFORMANCE

<table>
<thead>
<tr>
<th>Frequency</th>
<th>PSACR* (dB)</th>
<th>ACR* (dB)</th>
<th>Insertion Loss (dB)</th>
<th>PSNEXT (dB)</th>
<th>NEXT (dB)</th>
<th>PSACRF (dB)</th>
<th>ACRF (dB)</th>
<th>Return Loss (dB)</th>
<th>TCL (dB)</th>
<th>ELTCTL (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70.3</td>
<td>72.3</td>
<td>2.0</td>
<td>72.3</td>
<td>74.3</td>
<td>64.8</td>
<td>67.8</td>
<td>20.0</td>
<td>40.0</td>
<td>35.0</td>
</tr>
<tr>
<td>4</td>
<td>59.3</td>
<td>61.5</td>
<td>3.8</td>
<td>63.3</td>
<td>65.3</td>
<td>52.8</td>
<td>55.7</td>
<td>23.0</td>
<td>40.0</td>
<td>23.0</td>
</tr>
<tr>
<td>10</td>
<td>51.3</td>
<td>53.3</td>
<td>6.0</td>
<td>57.3</td>
<td>59.3</td>
<td>44.8</td>
<td>47.8</td>
<td>25.0</td>
<td>40.0</td>
<td>15.0</td>
</tr>
<tr>
<td>16</td>
<td>46.7</td>
<td>48.7</td>
<td>7.6</td>
<td>54.2</td>
<td>56.2</td>
<td>40.7</td>
<td>43.7</td>
<td>25.0</td>
<td>38.0</td>
<td>10.9</td>
</tr>
<tr>
<td>20</td>
<td>44.3</td>
<td>46.3</td>
<td>8.5</td>
<td>52.8</td>
<td>54.8</td>
<td>38.8</td>
<td>41.7</td>
<td>25.0</td>
<td>37.0</td>
<td>9.0</td>
</tr>
<tr>
<td>31.25</td>
<td>39.2</td>
<td>41.2</td>
<td>10.7</td>
<td>49.9</td>
<td>51.9</td>
<td>34.9</td>
<td>37.9</td>
<td>23.6</td>
<td>35.1</td>
<td>—</td>
</tr>
<tr>
<td>42.5</td>
<td>29.9</td>
<td>32.0</td>
<td>15.4</td>
<td>45.6</td>
<td>47.4</td>
<td>28.9</td>
<td>31.8</td>
<td>21.5</td>
<td>32.0</td>
<td>—</td>
</tr>
<tr>
<td>62.5</td>
<td>22.5</td>
<td>24.5</td>
<td>19.8</td>
<td>42.3</td>
<td>44.3</td>
<td>24.8</td>
<td>27.8</td>
<td>20.1</td>
<td>30.0</td>
<td>—</td>
</tr>
<tr>
<td>100</td>
<td>15.9</td>
<td>16.9</td>
<td>24.7</td>
<td>39.7</td>
<td>41.7</td>
<td>21.3</td>
<td>24.3</td>
<td>18.9</td>
<td>28.2</td>
<td>—</td>
</tr>
<tr>
<td>200</td>
<td>8.8</td>
<td>10.8</td>
<td>29.0</td>
<td>37.8</td>
<td>39.8</td>
<td>18.8</td>
<td>21.8</td>
<td>18.0</td>
<td>27.0</td>
<td>—</td>
</tr>
<tr>
<td>250</td>
<td>5.5</td>
<td>5.5</td>
<td>32.8</td>
<td>36.3</td>
<td>38.3</td>
<td>16.8</td>
<td>19.8</td>
<td>17.3</td>
<td>24.0</td>
<td>—</td>
</tr>
<tr>
<td>350</td>
<td>—</td>
<td>—</td>
<td>39.8</td>
<td>34.1</td>
<td>36.1</td>
<td>13.9</td>
<td>16.9</td>
<td>16.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>400</td>
<td>—</td>
<td>—</td>
<td>43.0</td>
<td>33.3</td>
<td>35.3</td>
<td>12.8</td>
<td>15.8</td>
<td>15.9</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>500</td>
<td>—</td>
<td>—</td>
<td>48.9</td>
<td>31.8</td>
<td>33.8</td>
<td>10.8</td>
<td>13.8</td>
<td>15.2</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

*PSACR & ACR not specified in ANSI/TIA 568-C.2

Note: Values are expressed in dB per 100 m (328 ft.) length @ 20°C. Results beyond 350 MHz are for reference only.